What is the Theory of Inventive Problem Solving?

The Theory of Inventive Problem Solving, also known as TRIZ, is a system of rules and tools aimed at practical problem solving. It was originally geared toward patents within the engineering community, but also applicable to many other disciplines including technology forecasting, strategic planning, etc. Basically, its an iterative process for systematic innovation that teaches you how to find answers to your problems, often by looking at other scientific fields. An underlying concept is that somebody, somewhere has already solved your problem —- the challenge is to find that solution and modify it into a new set of solutions to fit your circumstances.
Three key discoveries of TRIZ were:
  1. Problems and solutions were repeated across industries and sciences
  2. Patterns of technical evolution were repeated across industries and sciences, and
  3. Breakthrough innovations used scientific effects outside the field where they were developed.

Why learn TRIZ?

TRIZ was formed to help solve technical problems without compromise. Solving a problem so that the problem disappears usually involves a highly inventive solution that is sometimes patentable. Here are some companies that are currently using TRIZ.

  • Samsung – When they first started using TRIZ, they had two consultants spend 8 weeks with a few of their engineers. They produced 50 feasible ideas and more than 10 patents. In 2003, Samsung used TRIZ on 67 R & D projects. They produced 57 patents and estimate saving $150 million in development time and energy. Samsung’s R & D budget was $2.9 billion and they had 4000 people trained in the methodology.
  • Proctor & Gamble – From 1985 to 1994, P & G produced less than 200 patents/year. Since introducing TRIZ in 1994, their patent output has grown by 100 patents/year. In 2000, they produced almost 600 patents.
  • HP has several hundred people trained in TRIZ.
  • Delphi has integrated TRIZ into all of their Six Sigma efforts.
  • 3M was a heavy user in the past and, after a period of stagnation involving a corporate reorganization, is again becoming a significant user.

People who would benefit from learning TRIZ are:

  • Researching Scientists – The regular TRIZ Inventive Problem Solving tools will help you to come up with innovative solutions faster. The goal is not to compromise. The goal is to make the problem disappear.
  • Design and Development Engineers – The regular TRIZ Inventive Problem Solving tools will help you break walls in the development effort. In addition, Technology Roadmapping will help you to see the next step in technological advancement and get a head start in its development and design.
  • Intellectual Property – A growing number of companies are starting to use TRIZ Technology Roadmapping to invent new technology and build patent fences around it. Money is then poured into R & D and, using Inventive Problem Solving, the company creates a product that sweeps the market. Even more troubling, companies are using TRIZ Inventive Problem Solving to circumvent and break patents. By using TRIZ to analyze patent applications, inventors and intellectual property lawyers can bulk up their claims, helping to protect the company’s IP. In some cases, the analysis comes up with additional inventions and more patents.
  • Managers – This method is a powerful tool for solving any type of problem. There are many examples where it has been adapted for use in business and social situations. TRIZ tools are useful as the problem resolution part of the Theory of Constraints and Lean Six Sigma. Lean and TOC identify and prioritize your problem. TRIZ assists in solving the stubborn ones.

Micro-Intro to TRIZ

This will give you a quick intro to the main problem solving algorithm.

What is the Theory of Inventive Problem Solving?

The Theory of Inventive Problem Solving (TRIZ) is a powerful algorithm for deriving highly innovative solutions to tough problems. TRIZ development was started in Russia by Genrich Altshuller. Altshuller analyzed 40,000 patents for the underlying principles behind the inventions. This study started the “science of invention” that was to be his life’s work.
The TRIZ algorithm has two main parts. The first part consists of thoroughly defining a problem. The second part uses TRIZ tools to develop innovative solutions.

The TRIZ Algorithm

  1. Define the Problem.
  2. Determine the Ideal Final Result.
  3. Create a Functional Model of the Problem.
  4. Identify Harmful Functions to Trim.
  5. Find Your Resources.
  6. Use The TRIZ Tools.
  7. Evaluate, Combine, and Implement Solutions.

45% of the time, your problem will be solved before you begin using the TRIZ tools in step 6. This is because the TRIZ algorithm demands a complete understanding of the problem before any thought of solutions takes place. This goes against the grain of typical problem solving. Most of the time, you see a problem and immediately start thinking about ways to fix it. Not much systematic thought is given to the reason for the problem. A TRIZ trained problem solver spends most of his or her time meticulously mapping the entire anatomy of the problem. Once mapped, the problem solver is then in the position to propose several possible solutions to the different parts of the problem.

Major TRIZ Tools

  1. Technical Contradiction Analysis – If you can formulate your problem into a contradiction where one improving feature is met with a worsening feature, you may be able to obtain new directions for innovation from the Contradiction Matrix.
  2. Physical Contradiction Analysis – For an inherent contradiction, one in which an object must perform two opposing functions, you can apply the “four ways” to remove them.
  3. Patterns of Evolution – This tool helps inventors see how their product will evolve. Such insight allows one to pursue large leaps in improvement. There are eight patterns of evolution that technological systems follow. The Patterns of Evolution are a key component in Technology Roadmapping.
  4. Scientific Effects – Once you have generalized your problem, you can then go out and look for solutions that do the same thing in other industries.
  5. Substance Field Analysis – Structures your system as two or more substances operated on by one or more fields. Once composed, Su-field Analysis provides a way for the user to replace substances and/or fields to remove problems. By doing Functional Analysis in Step 3, you will have performed a version of Su-field Analysis.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s